电子邮箱

密码

注册 忘记密码?
真科微球
一站式阴影微球刻蚀技术实现方案
One-Stop Solutions to 
Shadow Sphere Lithography (SSL)
Designing 3D Polymeric Structures through Capillary Wetting on Colloidal Monolayer
来源: | 作者: 超艾纬来 | 发布时间: 2024-03-25 | 235 次浏览 | 分享到:

Colloidal lithography has provided a facile means to create regular micro- and nano-patterns by employing colloidal crystals as masks. However, the patterns are usually restricted to 2D as most techniques do not exploit the spherical shape of colloidal masks. Here, 3D structures are designed by utilizing capillary wetting of liquified photoresists on colloidal monolayers of silica particles. The silica particles are anchored at planar air-photoresist interfaces to have an equilibrium contact angle without interfacial deformation for thick polymer layers. By contrast, when the polymer layers are thin enough, they wet the colloidal monolayer by forming periodic wavy interfaces to provide a constant Laplace pressure. The photo-crosslinking of the photoresist and subsequent removal of silica particles leave behind periodic nanostructures with 3D-undulated surfaces. Importantly, the structure and waviness are further controllable by adjusting the polymer thickness relative to the particle radius. As the shape of the interface is determined by capillarity, the 3D structures are reproducible as long as the dimension is smaller than the capillary length. The use of photoresists enables the production of micropatterns of the periodic wavy structures by photolithography. As one of the potential applications, structurally-colored patterns are demonstrated with enhanced plasmonic and diffraction colors.


文章链接:Designing 3D Polymeric Structures through Capillary Wetting on Colloidal Monolayer - Lee - 2023 - Advanced Functional Materials - Wiley Online Library